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Introduction
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❑ Machine Learning training requires one to evaluate 
how one vector changes with respect to another?

● How output changes with respect to parameters?
● How do we find minimum of a scalar function?
● How do we find minimum of two variables?

Motivation
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Neural Network

CE282: Linear Algebra Maryam Ramezani



5

❑ Optimizing the weights of a neural 
network, or more generally the 
parameters of a machine learning 
model, can be an extremely complex 
task.

❑ Many tools have been developed for 
this purpose. The core of these tools 
relies on the use of "local 
information," such as derivatives 
(gradients) and similar methods.

❑ Here, the problem is to search for 
and find the optimal weights in a 
continuous space, which has an 
infinite number of potential 
candidates. Such a problem is also 
referred to as Continuous 
Optimization.

ML Optimization
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❑ Scalar Function
❑ Scalar Field or 𝑓: ℝ𝑛×𝑘 → ℝ or 𝑓:ℝ → ℝ

❑ Vector Field                        or 𝑓: ℝ𝑛×𝑘 → ℝ𝑚 or 𝑓: ℝ → ℝ𝑚

❑ Matrix Field 𝑓: ℝ𝑛 → ℝ𝑛×𝑚or 𝑓: ℝ𝑛×𝑘 → ℝ𝑝×𝑚 or 𝑓:ℝ → ℝ𝑝×𝑚

❑ Tensor Field  𝑓: 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑣𝑒𝑐𝑡𝑜𝑟,𝑚𝑎𝑡𝑟𝑖𝑥 → ℝ𝑛×𝑚×𝑘

In higher dimensions, if we take the derivative of a scalar field, it will result in 
a scalar field (Gradient). If we take the derivative again, it will result in 
a matrix-valued function (Hessian).

Different Functions
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Overview
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Tensor! (Optional part 
of this course)
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Scalar function 
Derivation
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Overview
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❑ A derivative, which itself is a function 𝑓:ℝ → ℝ, stores 
local/instantaneous information about changes in the function.

❑ Note that the derivative may not be defined at certain points (or 
anywhere at all). Functions that are differentiable throughout their 
domain are referred to as differentiable.
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Simple Rules
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A function is considered well-behaved if it satisfies these criteria:
❑ Continuity: The function is continuous across its domain (no jumps 

or breaks).
❑ Differentiability: The function is differentiable at every point in its 

domain (no sharp corners).
❑ Smoothness: The derivative is also continuous, ensuring smooth 

transitions.

Well-Behaved Functions in Differentiation
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Well-Behaved Functions in Differentiation
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Interpretation of First and Second Derivatives
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Interpretation of First and Second Derivatives
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Taylor series: Estimating a Function with a Polynomial
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Estimating a Function with a Polynomial
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Taylor series Example
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Taylor series  Example
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Scalar Field
Derivation
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Scalar with respect to scalar
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Vector-Valued Function

CE282: Linear Algebra Maryam Ramezani

https://youtu.be/GkB4vW16QHI

https://youtu.be/GkB4vW16QHI
https://youtu.be/GkB4vW16QHI
https://youtu.be/GkB4vW16QHI
https://youtu.be/GkB4vW16QHI
https://youtu.be/GkB4vW16QHI


22

Directional Derivative
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❑ Example

Directional Derivative
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❑ Example

Directional Derivative
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❑ Example

Directional Derivative
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❑ Example

Directional Derivative
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❑ Example

Directional Derivative
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❑ Example

Directional Derivative
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Directional Derivative
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𝑓: ℝ𝑛 → ℝ 𝑣 =
𝑎
𝑏

𝐷𝑣𝑓 = v. ∇𝑓
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Scalar with respect to vector

The row vector in (5.40) is called the gradient of f or the 
JacobianCE282: Linear Algebra Maryam Ramezani
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Example

●
𝜕(𝒙𝑇𝒂)

𝜕𝒙
= 𝒂𝑻

Note!
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Rules
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● Example 1:

Chain Rule
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● Example 2:

Chain Rule

CE282: Linear Algebra Maryam Ramezani



35

Scalar with respect to matrix
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Vector Field
Derivation
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Vector with respect to vector

The differentiation rules for every 𝑓𝑖 are exactly 
the ones we discussed in section 03

Why this happen??
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Vector with respect to vector

CE282: Linear Algebra Maryam Ramezani

Jacobian Matrix
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Vector with respect to scalar

The differentiation rules for every 𝑓𝑖 are exactly the ones we 
discussed in section 03

● If x ∈ ℝ is a scalar, then it is a column vector
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Dimensionality of (partial) derivatives
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Hessian Matrix
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Matrix Field
Derivation
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Matrix with respect to scalar
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Beautiful Examples!
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Note. Please pay attention to following example!

●

𝜕(𝑥𝑇𝑦)

𝜕𝑧
= 𝑥𝑇

𝜕(𝑦)

𝜕𝑧
+ 𝑦𝑇

𝜕(𝑥)

𝜕𝑧

● if x and y be vectors which elements are function of vector z

Important note on product Rule
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❑
𝜕(𝒖 𝒙 +𝒗 𝒙 )

𝜕𝒙
=

𝜕𝒖(𝒙)

𝜕𝑥
+

𝜕𝒗(𝒙)

𝜕𝒙

❑
𝜕(𝑨𝒙)

𝜕𝒙
= 𝑨

❑
𝜕(𝒙𝑇𝒂)

𝜕𝒙
= 𝒂𝑻

❑
𝜕(𝒙𝑇𝑨𝒙)

𝜕𝒙
= 𝒙𝑻 𝑨+ 𝑨𝑇

❑
𝜕(𝒙𝑇𝑨𝒙)

𝜕𝒙
= 2𝒙𝑇𝑨 if 𝑨 is symmetric

Let’s practice
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Hint!
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𝐴 Ԧ𝑥 =
𝑎1 𝑎2
𝑎3 𝑎4

𝑥1
𝑥2

=
𝑎1𝑥1 + 𝑎2𝑥2
𝑎3𝑥1 + 𝑎4𝑥2

𝑑𝐴 Ԧ𝑥

𝑑𝑥
=

𝜕(𝑎1𝑥1 + 𝑎2𝑥2)

𝜕𝑥1

𝜕(𝑎1𝑥1 + 𝑎2𝑥2)

𝜕𝑥2
𝜕(𝑎3𝑥1 + 𝑎4𝑥2)

𝜕𝑥1

𝜕(𝑎3𝑥1 + 𝑎4𝑥2)

𝜕𝑥2

=
𝑎1 𝑎2
𝑎3 𝑎4

= 𝐴
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❑
𝝏 𝑨 𝒕

−𝟏

𝝏𝒕
= −𝑨(𝒕)−𝟏

𝝏(𝑨 𝒕 )

𝝏𝒕
𝑨(𝒕)−𝟏

❑
𝝏𝐝𝐞𝐭(𝑨)

𝝏𝑨
= 𝐝𝐞𝐭 𝑨 𝑨−𝟏

❑
𝜕ln(det 𝐴 )

𝜕𝐴
= 𝑨−𝟏

❑
𝜕det(𝐴(𝑡))

𝜕𝑡
= det 𝐴 𝑡𝑟𝑎𝑐𝑒(𝐴−1

𝜕(𝐴 𝑡 )

𝜕𝑡
)

❑
𝜕𝑡𝑟𝑎𝑐𝑒(𝐵𝐴−1)

𝜕𝐴
= −𝐴−1𝐵𝐴−1

❑
𝜕 𝑦𝑇𝐴𝑥

𝜕𝐴
= 𝑥𝑦𝑇

❑
𝜕 𝑥𝑇𝐴𝑥

𝜕𝐴
= 𝑥𝑥𝑇

Let’s practice
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Review
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Given 𝐴 = [𝑎𝑖𝑗] , the (𝑖, 𝑗)-cofactor of 𝐴 is the number 𝐶𝑖𝑗 given by

𝐶𝑖𝑗 = −1 𝑖+𝑗 det 𝐴𝑖𝑗

Then 

det 𝐴 = 𝑎11𝐶11 + 𝑎12𝐶12 +⋯+ 𝑎1𝑛𝐶1𝑛

Which is a cofactor expansion across the first row of 𝐴.

𝐴−1 =
1

𝐴

𝐶11 𝐶21 ⋯ 𝐶𝑛1
𝐶12 𝐶22 ⋯ 𝐶𝑛2
⋮ ⋮ ⋱ ⋮

𝐶1𝑛 𝐶2𝑛 ⋯ 𝐶𝑛𝑛

= 𝐴−1 =
1

𝐴
𝑎𝑑𝑗 𝐴

𝑎𝑑𝑗 𝐴 = 𝐶𝑇

The matrix of cofactors is called the adjugate (or classical adjoint) of 𝐴, denoted by adj 𝐴.
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Tensors
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Tensor
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w = torch.empty(3)
x = torch.empty(2, 3)
y = torch.empty(2, 3, 4)
z = torch.empty(2, 3, 2, 4)

❑ Multi-dimensional array of numbers
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● Adding tensors with same size
● Adding scalar to tensor
● Adding tensors with different size: if broacastable

Tensors Addition
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Tensors Product
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● Approach 1

Matrix with respect to vector
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● Approach 2

Matrix with respect to vector
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● https://explained.ai/matrix-calculus/
● https://paulklein.ca/newsite/teaching/matrix%20calculus.pdf
● https://web.stanford.edu/~jduchi/projects/matrix_prop.pdf
❑ https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
❑ https://www.kamperh.com/notes/kamper_matrixcalculus13.pdf

References
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